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We investigate the nonlinear dynamics of a classical Duffing nanomechanical resonator coupled to a single-
electron transistor �SET� using a master equation formalism. We consider both the cases of hardening and
softening stiffnesses of the Duffing regime while assuming linear coupling between the SET and the resonator.
We first derive scaled master equations for the coupled system and define a parameter that characterizes the
effective nonlinearity in the system. Solving the equations using a method of moment approximations and
validating the approximations independently using finite element solutions, we conclude that the coupled
system reaches a steady state and that interaction with the SET damps the motion of the resonator at a
significantly higher rate in the hardening Duffing case in comparison with the case of a linear harmonic
resonator. The concomitant conclusion that the steady state is attained more rapidly suggests that the hardening
stiffness Duffing regime has better prospects for sensing applications than the linear regime. Moreover, analy-
sis of the variance of the resonator displacement in the steady state indicates that lower steady-state effective
temperatures are obtained in the nonlinear case. In the case of softening stiffness, dynamical instability occurs
in certain parameter regimes implying that the SET transfers energy to the resonator in these regimes. Inter-
estingly, the onset of instability is preceded by the appearance of periodic orbits in phase space. Since weak
coupling between the SET and the resonator is assumed throughout, our analysis indicates that a variety of
important phenomena, including negative damping, can arise from purely nonlinear motion of the nanome-
chanical resonator in this regime.
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I. INTRODUCTION

A nanoelectromechanical system �NEMS� may be broadly
understood as a nanostructured device in which there exists
significant mutual interaction between charge transport in the
device and its mechanical degrees of freedom.1–7 This elec-
tromechanical coupling implies that the current characteris-
tics of the device may be used to study its motion character-
istics. NEMS has been extensively studied in recent times
due to their immense potential for such applications as ultra-
sensitive motion detection,8–12 mass detection,13,14 charge
sensing,15 and force microscopy.16 Furthermore, they have
opened up exciting avenues in fundamental research as test-
beds for the direct observation of quantum behavior in me-
soscopic systems, the study of quantum control and quantum
computation.17–21

In this paper, we focus on a realization of NEMS that
comprises a nanoscale to microscale high-frequency me-
chanical oscillator capacitively coupled to a single-electron
transistor �SET�. The SET operates under the principle of
single-electron tunneling22 and the key idea here is that due
to the coupling, the oscillator motion leaves its signature on
the SET current which can be amplified and detected for
sensing applications. This system and its variants involving a
superconducting single-electron transistor �SSET� have been
the subject of intense experimental and theoretical research
and are well recognized as an important example of
NEMS.10,19,23–26

Given the typical high frequencies of nanoresonators �a
few hundred megahertz to gigahertz�, their small sizes �a few
microns in each dimension�, and the complex dynamical in-
terplay between the electronic and mechanical degrees of

freedom, nonlinear phenomena play an important role in
NEMS dynamics. In fact, experimental evidence suggests
that nonlinear effects in nanoresonators could be advanta-
geously harnessed in applications such as signal
amplification.27–31 On the other hand, the nonlinear regime of
nanoresonators is of great theoretical interest due to the oc-
currence of phenomena such as the transition to chaos,32 sto-
chastic resonance,31 and quantum effects.33

Analytical models for a nanomechanical resonator
coupled to a SET that account for the interaction between the
device and the resonator have only relatively recently
emerged in the literature. In our study of nonlinear resonator
motion, we are motivated by the formalism proposed by Ar-
mour et al.23 for the case of a normal-state SET weakly
coupled to a resonator where the latter is modeled as a
linear harmonic oscillator. We note that the
Armour-Blencowe-Zhang23 approach has been extended to
the case of a SSET �Ref. 24� and the main conclusions have
been verified experimentally �see, for instance, Ref. 19�.
Also, their model has motivated the treatment of the case of
strong coupling between the SET and the resonator.34

In this paper, we consider the dynamics of the SET-
nanoresonator system in the Duffing regime under the as-
sumption of weak linear coupling between the device and the
resonator. The assumption of linear coupling which translates
to a linear variation in gate capacitance of the SET with
respect to the resonator displacement is currently accepted as
a reasonable one.23 However, it is to be noted that the current
state of understanding of nonlinear processes in devices such
as the SET is far from complete and future work could lead
to a more general treatment based on a fully nonlinear cou-
pling between the SET and the resonator. Characteristic of
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the Duffing potential is a term that is quartic in the oscillator
displacement.35 Depending on this term being added to or
subtracted from the harmonic-oscillator potential, one ob-
tains the cases of hardening and softening spring stiffnesses,
respectively. Indeed, the two cases engender qualitatively
different dynamics.

We first derive the master equations that govern the model
in a generic way that is applicable to both the cases. Upon
appropriately scaling the equations, we define a parameter
that characterizes the type and strength of the effective non-
linearity in the resonator motion. We study nonlinear effects
based on this parameter. We then solve the master equations
using an approximate moment evolution method �MEM�,
validating our approximations using solutions generated in-
dependently by a finite element method �FEM�. Having ob-
tained the solutions, we then study the characteristics of the
resonator motion in the Duffing regime. Primarily we are
interested in whether the resonator motion is damped due to
the interaction with the SET resulting in the coupled system
reaching a steady state. In particular, if the damping mecha-
nism exists, we seek to understand the differences, if any,
between resonator damping in the linear and nonlinear cases.
Also, if the system reaches a steady state, we are interested
in the implications of the nonlinearity for the effective
steady-state temperature. Finally, we address the question of
the onset of dynamical instabilities associated with nonlinear
motion.

The paper is organized as follows. In Sec. II we briefly
discuss the system and the model whose generalization to the
Duffing regime will be studied in the subsequent sections.
The discussion here closely follows23 with an emphasis on
the two-nondimensional parameters � and � that play a cen-
tral role in the dynamics. In Sec. III, we derive the master
equations for the Duffing case and introduce a parameter �
that characterizes the type and strength of the nonlinearity. In
Sec. IV we derive a system of moment equations from the
master equations. Infinite moment hierarchy being a generic
feature of nonlinear systems, we obtain moment closure by
introducing a set of approximations. The validity of the ap-
proximations is established on a case by case basis in the
subsequent sections based on independently solving the mas-
ter equations using a finite element method. In Sec. V we
solve the moment equations for the case of the Duffing po-
tential with hardening stiffness for different values of � and
observe that the system reaches a steady state in all the cases.
However, the steady state is reached much more rapidly as
the strength of the nonlinearity is increased. In other words,
the damping rate increases remarkably with increasing val-
ues of �. Furthermore, the variance of the displacement in
the steady state decreases with increasing �. In Sec. VI we
solve the case of the Duffing potential with softening stiff-
ness and observe that the SET back action is less efficient in
damping the resonator motion than the linear case even in
the presence of very weak nonlinearity. As the magnitude of
� is increased, the SET back action becomes increasingly
incapable of damping the resonator motion. Eventually a
critical value of � is reached at which the SET and the reso-
nator exist in equilibrium where we observe a periodic orbit
in the phase space of the resonator. Beyond this critical value
of �, we observe the onset of instability. We conclude the

paper in Sec. VII with a discussion of our results and their
implications for sensing applications of the SET-
nanoresonator system.

II. SET-RESONATOR SYSTEM AND THE ANALYTICAL
MODEL

A. SET-resonator system

A schematic of the system studied in this paper is pre-
sented in Fig. 1, reproduced from Ref. 7. The SET comprises
of the left and right tunnel junctions �indicated by L and R in
the figure� as well as the gate �island� whose capacitance is
labeled Cg in the figure. The gate voltage is denoted by Vg
and the drain-source voltage by Vds. The tunneling rates
across the left and right junctions are given by �L/R

� where the
plus and minus signs indicate the direction of tunneling.

B. Analytical model

In this section we discuss the analytical model for the
SET-resonator system proposed by Armour et al.23 The start-
ing point is the orthodox model for a stand-alone SET.22 The
only two accessible dynamical states of the SET considered
are those with N or N+1 electrons in the central island and
the orthodox model characterizes these mutually exclusive
states by probabilities pN�t� and pN+1�t� that correspond to
the probabilities of finding N or N+1 electrons in the island
at time t, respectively. The time evolutions of these prob-
abilities are governed by a pair of coupled master equations
given by22

dpN

dt
= − ��L

− + �R
+�pN + ��L

+ + �R
−�pN+1, �1�

dpN+1

dt
= ��L

− + �R
+�pN − ��L

+ + �R
−�pN+1, �2�

where �L/R
� represent the tunneling rates in the left �L� and

right �R� junctions of the SET island. Here the � signs indi-

FIG. 1. Circuit diagram of a SET-resonator system.
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cate that tunneling, under very general conditions, is possible
in both directions. The expressions for the tunneling rates are
given by Fermi’s golden rule and take the final form,22,36

�L/R
� =

1

e2RJ

EL/R
�

�1 − exp�− EL/R
� /kBTe��

. �3�

In the above expression e represents the electron charge, RJ
the effective junction resistance �assumed identical for both
junctions of the island�, kB the Boltzmann constant, Te the
temperature of the source, drain, and island electron reser-
voirs �all assumed equal�, and EL/R

� the energy gained by a
single-electron tunneling to the left �+� or to the right �−�
across the left �L� or right �R� junction.

The significant step taken in Ref. 23 is the modification of
the above master equations to incorporate the dynamics of
the resonator. The state of the resonator can be described by
a continuous probability density function P�x ,u ; t� where x
stands for the position and u stands for the velocity of the
resonator. Now, since for each state of the resonator the SET
can be in either of the states N or N+1, one needs to be able
to define the probability of finding the SET in either of these
states, given that the probability density of the resonator is
P�x ,u ; t�. To this end, the model defines a decomposition of
P into P�x ,u ; t�= PN�x ,u ; t�+ PN+1�x ,u ; t� where the func-
tions PN and PN+1 are called subdensities and are used to
define the probabilities of the finding the SET in the N or
N+1 states, respectively, given that the resonator is in the
state �x ,u� at time t.

Since the transition of the SET island from the N electron
state to the N+1 electron state �and vice versa� is guaranteed
to alter the dynamical state of the resonator, the resonator
Hamiltonian corresponding to the two states is denoted by
HN and HN+1. The key idea now is to treat the probability
subdensities PN and PN+1 as dynamical variables evolving
under the corresponding Hamiltonians HN and HN+1. At once,
Liouville’s theorem can be invoked to incorporate the reso-
nator dynamics into the orthodox model master equations
�Eqs. �1� and �2�� to write the generalized master equations
for the SET-nanoresonator system as

�PN

�t
= �HN,PN� − ��L

− + �R
+�PN + ��L

+ + �R
−�PN+1, �4�

�PN+1

�t
= �HN+1,PN� + ��L

− + �R
+�PN − ��L

+ + �R
−�PN+1. �5�

The next crucial step in order to achieve coupling between
the resonator motion and the tunneling process is to calculate
the tunneling rates in terms of HN and HN+1. We refer to Ref.
23 for the details of this calculation and the assumptions
involved therein. The master equations are obtained in ex-
plicit form as

�PN

�t
= �0

2�x�
�PN

�u
− u

�PN

�x

+
1

e2RJ
�ELPN+1 − ERPN − m�0

2x0xP� , �6�

�PN+1

�t
= �0

2�x − x0�
�PN+1

�u
− u

�PN+1

�x

−
1

e2RJ
�ELPN+1 − ERPN − m�0

2x0xP� , �7�

where the left and the right tunneling rates are now given by

EL = − 2EcN� − m�0
2x0

2�Ng − N� − 1/2� + eVds/2, �8�

ER = 2EcN� + m�0
2x0

2�Ng − N� − 1/2� + eVds/2. �9�

In the above expressions for EL and ER, Ec=e2 /2C is the
island charging energy where e is the electron charge and C
is the total SET capacitance. N�=Ng−N−1 /2 is a constant
defined to simplify the algebra. In the definition of N�, the
quantity Ng is called the charge induced by the gate voltage
and is defined by Ng=CgVg /e where Cg and Vg are the gate
capacitance and the gate voltage, respectively. Also, m is the
mass of the resonator, �0 is the natural frequency of oscilla-
tion, and x0 is the shift in resonator position induced by a
tunneling electron and is explicitly defined as x0=
−e2Ng /Cm�0

2d, where d is the resonator-SET island gap.
We note here that, applying the scaling transforms u�

=u /u0, x�=x /x0, and t�= t /	t where 	t is the electron-
tunneling time that defines the characteristic time scale of
processes in the SET, x0 is the characteristic displacement of
the resonator, and u0=x0 /	t, the master equations may be
written in nondimensional form as7

�PN

�t
= �2x

�PN

�u
− u

�PN

�x
+ ẼLPN+1 − ẼRPN, �10�

�PN+1

�t
= �2�x − 1�

�PN+1

�u
− u

�PN+1

�x
− ẼLPN+1 + ẼRPN,

�11�

where the dimensionless parameters � and � are introduced.
The parameter �, defined as �=�0	t, characterizes the sepa-
ration between the resonator and SET dynamical time scales.
We again note that 	t, the time taken by an electron to tunnel
onto or off of the island, defines the characteristic time scale
of the SET. The other dimensionless parameter is defined as
�=m�0

2x0
2 /eVds and characterizes the coupling strength be-

tween the resonator and the SET. The dimensionless energy

terms ẼL and ẼR can be expressed as23

ẼL = −
e

CVds
�Ng − N −

1

2
� − �N +

1

2
− �x , �12�

ẼR = +
e

CVds
�Ng − N −

1

2
� + �N +

1

2
+ �x . �13�

In the model, the parameters � and � hold the key to
describing the coupled SET-resonator dynamics. In general,
the electron-tunneling time is much smaller compared to the
oscillator period and hence practical situations are best de-
scribed by small values for �. Likewise, strong interaction
between the SET and the resonator complicates the dynamics
to the extent that the model loses its validity. Hence it is
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important to consider small values for � as well.

III. MASTER EQUATIONS FOR THE DUFFING
RESONATOR

In our analysis of the Duffing resonator motion we as-
sume that the island charging energy Ec of the SET is large in
comparison with the electronic thermal energy kBTe and the
drain-source bias eVds. We do not consider external damping
effects. Moreover, since little is currently known about non-
linear behavior of the SET, we neglect the nonlinear terms in
the Hamiltonian in calculating the tunneling rates in the de-
vice. In other words, in our approach the nonlinear effects
are confined to the resonator motion via the Poisson bracket
terms in the master equations derived in Ref. 23. This impor-
tant assumption is further buttressed by the fact that in all the
current models of the SET-resonator system, the gate capaci-
tance of the SET is assumed to be a linear function of the
oscillator displacement. This is tantamount to our approach
of considering only the linear terms of the Hamiltonian in
calculating the SET tunneling rate.

Consider a Duffing nanoresonator with resonator Hamil-
tonians for the N and N+1 states of the system given by

HN =
p2

2m
+

1

2
m�0

2�x2 + 
x4� , �14�

HN+1 =
p2

2m
+

1

2
m�0

2��x − x0�2 + 
�x − x0�4� . �15�

Here p represents the momentum, m the mass, and �0 the
frequency of the resonator. The quantity x0 is the distance
between the equilibrium positions of the resonator corre-
sponding to the N and N+1 states of the SET island. In
comparison with a linear harmonic oscillator, the difference
is the added term 
x4 in the potential energy. This is the
generic potential for a Duffing system and 
 is a constant,
the magnitude of which determines the strength of the quar-
tic order term in the potential function. The sign of 
 deter-
mines the geometry of the potential function and the two
cases of 
 being positive or negative engender qualitatively
different dynamics.

Computing the Poisson brackets of the resonator Hamil-
tonians HN and HN+1 with PN and PN+1, retaining the tunnel-
ing terms from Eqs. �6� and �7�, and defining the constant
�=2
, we can write the master equations for the Duffing
case as

�PN

�t
= �0

2�x + �x3�
�PN

�u
− u

�PN

�x
+

1

e2R
�ELPN+1 − ERPN

− m�0
2x0xP� , �16�

�PN+1

�t
= �0

2��x − x0� + ��x − x0�3�
�PN+1

�u
− u

�PN+1

�x

−
1

e2R
�ELPN+1 − ERPN − m�0

2x0xP� . �17�

Applying the scaling transforms u�=u /u0, x�=x /x0, and t�

= t /	t to Eqs. �16� and �17� where 	t is the electron-tunneling
time that defines the characteristic time scale of processes in
the SET, x0 is the characteristic displacement of the resonator
as defined in Sec. II, u0=x0 /	t, and recalling the definitions
of � and � from Sec. II, we can write the nondimensional
form of the master equations as

�PN

�t
= �2�x + �x0

2x3�
�PN

�u
− u

�PN

�x
+ 	PN+1

2
−

PN

2
− �xP
 ,

�18�

�PN+1

�t
= �2��x − 1� + �x0

2�x − 1�3�
�PN+1

�u
− u

�PN+1

�x

− 	PN+1

2
−

PN

2
− �xP
 . �19�

Parameter �

Comparing Eqs. �18� and �19� with the master equations
in the case of a linear resonator �Eqs. �6� and �7��, it is
evident that nonlinearity in the resonator contributes the
terms �x0

2x3 and �x0
2�x−1�3 to the master equations. The only

other parameters in the equations are � and �. Hence we
define

� = �x0
2. �20�

We make the following observations about �. First, since x0
2

is always positive, � is guaranteed to faithfully reflect sign
changes in �. Therefore, changing the sign of � allows us to
unambiguously represent the hardening and softening stiff-
ness Duffing potentials. Second, � is the true index of the
effective nonlinearity in the SET-resonator system. Consider
a weakly nonlinear resonator that corresponds to a relatively
small value of �. However, a relatively high value of x0
�resulting from a relatively stronger coupling between the
SET and the resonator since x0 is the resonator displacement
induced by the �N+1�th electron tunneling onto the SET
island� even under this circumstance implies a higher value
of � thereby amplifying the nonlinear effect. On the other
hand, we have the expected conclusion that a higher value of
� implies a higher � even if the coupling between the device
and the resonator is weak �smaller x0�. Third, as a parameter
that dictates the dynamics, � is to be treated on par with �
and �. Indeed, in the sequel we discuss all uniquely nonlinear
effects in terms of �. We now write the master equations in
their final form as

�PN

�t
= �2�x + �x3�

�PN

�u
− u

�PN

�x
+ 	PN+1

2
−

PN

2
− �xP
 ,

�21�

�PN+1

�t
= �2��x − 1� + ��x − 1�3�

�PN+1

�u
− u

�PN+1

�x

− 	PN+1

2
−

PN

2
− �xP
 . �22�
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IV. MOMENT EVOLUTION EQUATIONS

A straightforward method of solving the master equations
is to solve the associated system of moment evolution equa-
tions. However, in the case of nonlinear systems the moment
hierarchy grows unboundedly and hence judicious approxi-
mations are imperative in obtaining solutions. In this section
we derive the exact moment equations, introduce a set of
approximations, and arrive at the final set of equations to be
solved.

In order to set the notation we adopt standard terminology
from probability theory and denote the mean value of an
arbitrary random process s�t� at time t with respect to the
density P as

�s� =
 dx
 dusP . �23�

Similarly, the averages with respect to PN�x ,u ; t� and
PN+1�x ,u ; t� are, respectively, defined as

�s�N =
 dx
 dusPN,

�s�N+1 =
 dx
 dusPN+1. �24�

In Eq. �24� the limits of integration for both variables x and
u are defined by the open interval �−� ,��. We recall that by
construction, P�x ,u ; t�= PN+ PN+1. Carrying out straightfor-
ward calculations based on Eqs. �21� and �22� we obtain the
moment evolution equations in the notation defined in Eq.
�24� as

d�x�
dt

= �u� , �25�

d�u�
dt

= − �2��x� + ��x3�� + �2�1 + ���P�N+1 − 3�2��x�N+1

+ 3�2��x2�N+1, �26�

d�P�N+1

dt
= − �P�N+1 +

1

2
+ ��x� , �27�

d�x3�
dt

= 3�x2u� , �28�

d�x�N+1

dt
= �u�N+1 − �x�N+1 +

1

2
�x� + ��x2� , �29�

d�x2�N+1

dt
= 2�ux�N+1 − �x2�N+1 +

1

2
�x2� + ��x3� , �30�

d�x2�
dt

= 2�ux� , �31�

d�u�N

dt
= − �2��x�N + ��x3�N� +

1

2
�u� − ��xu� + �u�N,

�32�

d�x3�N

dt
= 3�x2u�N. �33�

That the number of equations in the above system continues
to grow if we were to attempt a further decoupling of the
moments of the products raises the question as to why a
system of nine equations is chosen. The answer lies in the
fact that the solutions obtained from the moment equation
approach �at different levels of approximation� can be readily
compared with our finite element solutions and we found the
above system of equations to be optimal. In order to obtain
closure for the above set of moment evolution equations,
after exploring various possibilities, we arrived at the follow-
ing decoupling approximations. As will be discussed in the
sequel these approximations are justified based on the finite
element solutions. It is also noted here that the approxima-
tions assume decoupling between moments of positions and
velocities. Since position and velocity are independent vari-
ables in phase space, the assumptions of decoupling between
their moments are more justifiable than similar assumptions
between higher moments of the same variable. The approxi-
mations are

�x2u� = �x2��u� ,

�ux�N+1 = �u�N+1�x�N+1,

�ux� = �u��x� ,

�x2u�N = �x2�N�u�N. �34�

Introducing the approximations �Eq. �34�� into the moment
evolution equations we can write the decoupled system of
equations as

d�x�
dt

= �u� , �35�

d�u�
dt

= − �2��x� + ��x3�� + �2�1 + ���P�N+1 − 3�2��x�N+1

+ 3�2��x2�N+1, �36�

d�P�N+1

dt
= − �P�N+1 +

1

2
+ ��x� , �37�

d�x3�
dt

= 3�x2��u� , �38�

d�x�N+1

dt
= �u�N+1 − �x�N+1 +

1

2
�x� + ��x2� , �39�
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d�x2�N+1

dt
= 2�u�N+1�x�N+1 − �x2�N+1 +

1

2
�x2� + ��x3� ,

�40�

d�x2�
dt

= 2�u��x� , �41�

d�u�N

dt
= − �2��x�N + ��x3�N� +

1

2
�u� − ��x��u� + �u�N,

�42�

d�x3�N

dt
= 3�x2�N�u�N. �43�

We now make note of the following identities that arise from
the construction P�x ,u ; t�= PN+ PN+1:

�u� = �u�N + �u�N+1, �44�

�x2� = �x2�N + �x2�N+1. �45�

For convenience we now label the quantities in Eqs.
�35�–�43� as follows:

�x� = X1,

�u� = X2,

�P�N+1 = X3,

�x3� = X4,

�x�N+1 = X5,

�x2�N+1 = X6,

�x2� = X7,

�u�N = X8,

�x3�N = X9. �46�

Using Eqs. �44�–�46� we write Eqs. �35�–�43� in the new
variables as

Ẋ1 = X2,

Ẋ2 = − �2�X1 + �X4� + �2�1 + ��X3 − 3�2�X5 + 3�2�X6,

Ẋ3 = − X3 +
1

2
+ �X1,

Ẋ4 = 3X2X7,

Ẋ5 = �X2 − X8� − X5 +
1

2
X1 + �X7,

Ẋ6 = 2�X2 − X8�X5 − X6 +
1

2
X7 + �X4,

Ẋ7 = 2X1X2,

Ẋ8 = − �2�X1 − X5 + �X9� +
1

2
X2 − �X1X2 − X8,

Ẋ9 = 3�X7 − X8� . �47�

The nonlinear system �Eq. �47�� is the set of moment evolu-
tion equations for the Duffing nanoresonator. We reiterate
that positive and negative values for � correspond to the
hardening and softening Duffing potentials. We solve the
moment evolution equations for various values of � in the
sequel, noting that the linear case is obtained by setting �
=0 in Eq. �47�. Indeed, for this case the equations collapse to
the closed moment system obtained in Ref. 23.

In order to understand the effects of varying �, we set �
=0.1 and �=0.3 in all our cases. The choice of these values
for � �which measures the interaction strength between the
SET and the resonator� and � �which compares the relative
time scales of the resonator period and the electron-tunneling
time� is guided by the fact that the model is only valid for
both � and � much less than unity.23 However, extremely
weak coupling between the SET and the resonator �for in-
stance, say, �=0.01� could mask the uniquely nonlinear ef-
fects and hence our choice is influenced by this aspect as
well. In this context, we would like to draw a distinction
between the coupling strength of the SET-resonator interac-
tion and the dynamical effects that arise due to nonlinear
resonator motion. We emphasize this important point in dis-
cussing our results. We also note here that in all the cases,
initial conditions on PN and PN+1 are taken to be sharply
peaked Gaussian densities with mean value of 0.5 and vari-
ance of 0.006 25.

V. DUFFING POTENTIAL WITH HARDENING STIFFNESS

In this section we consider the Duffing potential with
hardening stiffness, numerically solving the moment evolu-
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FIG. 2. �Color online� Mean displacement of the resonator: �
=0.
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tion �Eq. �47�� for the cases �=0.5, �=0.75, and �=1. How-
ever, in order to compare our results with the linear case we
first solve the latter case with �=0. The FEM solutions are
utilized to validate the approximations invoked in obtaining
moment closure in each of the nonvanishing � cases. Addi-
tionally, the steady-state probability densities are obtained
from the FEM solutions in each of the cases.

A. Linear case

Setting �=0, the system of moment evolution �Eq. �47��
collapses to the following system of equations:

Ẋ1 = X2,

Ẋ2 = − �2�X1 − X3� ,

Ẋ3 = − X3 +
1

2
+ �X1. �48�

Indeed, these are the moment evolution equations obtained in
Ref. 23. The resonator response is presented in Fig. 2 and
clearly, the resonator motion is damped by the SET and the

system reaches a steady state. The steady-state-density func-
tions are given in Fig. 3.

B. Case �=0.5

1. Mean displacement

In Fig. 4 we present a comparison of the time evolution of
the mean resonator displacement for the case �=0.5 obtained
from the FEM and the MEM. First, we note that the mean
resonator displacement is asymptotically stationary implying
that the system attains a steady state. Keeping in mind that
the solutions obtained from the two methods cannot be ex-
pected to agree entirely due to the approximations involved
in the MEM, the second point is that the maximum differ-
ence in peak amplitudes �which occurs in the first period� is
about 6%. Furthermore, the difference in the �scaled� mean
displacement when the system is very close to the steady
state at time t /	=120 is about 0.013. Therefore, we conclude
that the two solutions are in good qualitative agreement and
that the MEM solution is a good approximation to the reso-
nator displacement in this case. In Fig. 5 we present the
MEM solution for the resonator displacement plotted until
t /	=400.
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FIG. 3. �Color online� Steady state probability subdensities: �
=0.
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FIG. 4. �Color online� Mean displacement of the resonator: �
=0.5.
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FIG. 5. �Color online� Mean displacement of the resonator: �
=0.5.
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FIG. 6. �Color online� Steady state probability subdensities: �
=0.5.
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The damping of the resonator motion observed in Figs. 4
and 5 clearly indicates that the resonator reaches a steady
state. The probability density functions PN and PN+1 corre-
sponding to the steady state are presented in Fig. 6.

2. Moment approximations

In order to further examine the validity of the moment
approximations used in the MEM, we now plot the time
evolution of each one of the approximations using the FEM
solution. In other words, we know precisely the approxima-
tions that have been made in the MEM and we would like to
examine their validity in the light of the FEM solution. We
recall from Eq. �34� that the approximations used in deriving
the moment evolution equations are given by

�x2u� � �x2��u� ,

�ux�N+1 � �u�N+1�x�N+1,

�ux� � �u��x� ,

�x2u�N � �x2�N�u�N. �49�

We present a comparison of the time evolution of each one
of the above approximations as computed from the FEM
solution in Figs. 7–10.

It is of interest to observe the qualitative similarity in
Figs. 7–9 between the exact result �the moment of the prod-
ucts� and the approximation �the product of the moments�.
Furthermore, we observe from Figs. 7 and 8 that the approxi-
mations tend to zero at t /	=120 while the exact values are
nonzero. This is explained based on the fact that in each of
these cases the approximation involves a product, a term in
which is the mean resonator velocity �u�. The mean resonator
velocity tends to zero in the steady state and the products
involved in the approximation vanish as well. The numerical
difference between the exact and approximate values in Fig.
9 is 0.0125 at t /	=120 while it is 0.0175 from Fig. 10. The
main point of this exercise is to buttress the moment approxi-
mations by demonstrating that the approximations do not
lead to significant divergences. Indeed, this ultimately re-
flects in the agreement between the FEM and MEM solutions
observed in Fig. 4.

3. Variance

The time evolution of the variance of the displacement is
presented in Fig. 11. It is observed that the variance settles
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FIG. 7. �Color online� Comparison from FEM: �=0.5.
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FIG. 8. �Color online� Comparison from FEM: �=0.5.
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FIG. 9. �Color online� Comparison from FEM: �=0.5.
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down to a constant value of approximately 0.305 as the sys-
tem approaches the steady state. This result, combined with
the behavior of the mean displacement, is further confirma-
tion that, indeed, the system reaches a steady state. The
steady-state value of variance of the displacement has impli-
cations for the steady-state effective temperature attained by
the system and hence the behavior of the variance of the
displacement with respect to the strength of the nonlinearity
is an important aspect of the analysis. We take up this point
for discussion in our conclusions. In this nonlinear case of
�=0.5, our analysis thus far has established that the MEM is
a reasonable approximation and that the SET-resonator sys-
tem attains a steady state. From comparing Figs. 2 and 5 we
then draw the important conclusion that the SET damps the
resonator at a significantly higher rate due to the nonlinearity
in the resonator motion. As will be seen in the next cases
corresponding to �=0.75 and �=1, this is a consistent result
since the rate at which the SET damps the resonator in-
creases with �, the strength of the nonlinearity in the reso-
nator motion.

C. Case �=0.75

We now consider the case of a stronger nonlinearity given
by �=0.75. The analysis proceeds along the lines of the �
=0.5 case.

1. Mean displacement

In Fig. 12 we present a comparison of the time evolution
of the mean resonator displacement for the case �=0.75 ob-
tained from the FEM and the MEM. The maximum differ-
ence in peak amplitudes �which again occurs in the first pe-
riod� is about 7.5% in this case. The difference in the �scaled�
mean displacement when the system begins to approach the
steady state at time t /	=120 is about 0.018. These values are
slightly higher than those obtained in the �=0.5 case. This is
to be expected since increasing the strength of the nonlinear-
ity certainly implies more complicated dynamics. However,
the two solutions are still in good qualitative agreement and
hence the MEM solution continues to be a good approxima-
tion to the resonator displacement. In Fig. 13 we present the
MEM solution for the resonator displacement plotted until
t /	=400. The probability density functions PN and PN+1 cor-
responding to the steady state obtained from the FEM solu-
tion are presented in Fig. 14.

2. Moment approximations

Since the consistency of the moment approximations is
not guaranteed when the strength of the nonlinearity is in-
creased, we examine the approximations in closer detail in
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FIG. 11. �Color online� Evolution of variance of displacement:
�=0.5.
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FIG. 12. �Color online� Mean displacement of the resonator: �
=0.75.
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FIG. 13. �Color online� Mean displacement of the resonator: �
=0.75.
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FIG. 14. �Color online� Steady state probability subdensities:
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the present case as well. We present a comparison of the time
evolution of each one of the moment approximations as com-
puted from the FEM solution in Figs. 15–18.

We observe that the qualitative similarity in Figs. 15–17
between the exact result �the moment of the products� and
the approximation �the product of the moments� implies that
our conclusions from the previous case of �=0.5 continue to
hold in this case as well. The disagreement between the exact
and the approximate quantities is most severe in the case of
the product �x2�N�u�N �Fig. 18�. There exists even a qualita-
tive difference between the moment of the product and the
product of the moments as the former increases initially be-
fore showing a significant drop at around t /	=5 whereas the
latter decreases monotonically with respect to �scaled� time.
However, asymptotically both the exact and approximate
quantities tend to constant values. Overall, even though the
difference between the exact and approximate values in the
steady state shows an increase �Figs. 15–18� when compared
to the �=0.5 case, the behavior is still not significantly dif-
ferent as to challenge the validity of the approximations.

3. Variance

The time evolution of the variance of the displacement is
presented in Fig. 19. It is observed that the variance settles
down to a constant value of approximately 0.302 as the sys-

tem approaches the steady state. This result, combined with
the behavior of the mean displacement, is further confirma-
tion that, indeed, the system reaches a steady state. Further-
more, it is important to note here that the steady-state vari-
ance has attained a lower value in this case when compared
to the case of �=0.5. When we compare Fig. 13 with Figs. 2
and 5 it is clear that the rate at which the SET damps the
resonator motion increases with increasing �. As a final case
in our analysis we consider �=1 in Sec. V D.

D. Case �=1

We now present the strongest nonlinear case that we con-
sider given by �=1.0. The analysis is very similar to that
carried out for the previous cases. In Fig. 20 we present a
comparison of the time evolution of the mean resonator dis-
placement for the case �=1.0 obtained from the FEM and
the MEM. The maximum difference in peak amplitudes
�which again occurs in the first period� is about 9.2% in this
case. The difference in the �scaled� mean displacement when
the system begins to approach the steady state at time t /	
=120 is about 0.019. As is to be expected, these values are
slightly higher than those obtained in the previous cases.
However, the two solutions continue to be in good qualita-
tive agreement and hence the MEM solution continues to be
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FIG. 15. �Color online� Comparison from FEM: �=0.75.
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FIG. 16. �Color online� Comparison from FEM: �=0.75.
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FIG. 17. �Color online� Comparison from FEM: �=0.75.
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a good approximation to the resonator displacement. In Fig.
21 we present the MEM solution for the resonator displace-
ment plotted until t /	=400. The probability subdensity func-
tions PN and PN+1 corresponding to the steady state obtained
from the FEM solution are presented in Fig. 22.

1. Moment approximations

As in the previous cases, we present a comparison of the
time evolution of each one of the moment approximations as
computed from the FEM solution in Figs. 23–26. The behav-
ior of the moments in Figs. 23–26 confirms that the approxi-
mations continue to hold in the qualitative sense. However,
quantitatively the difference between the steady-state values
of the exact and approximate quantities has increased com-
pared to all the previous cases. Therefore the approximation,
while still valid, becomes increasingly divergent from the
exact value as the strength of the nonlinearity is increased.

2. Variance

The time evolution of the variance of the displacement is
presented in Fig. 27. It is observed that the variance settles
down to a constant value of approximately 0.3 as the system

approaches the steady state. This interesting result is consis-
tent with the previous cases and clearly indicates that the
steady-state variance of the resonator displacement keeps de-
creasing as the strength of the nonlinearity is increased. Now
on comparing Figs. 2, 5, 13, and 22 we conclude that the
SET damps the resonator most effectively for �=1. We also
mention a point here that is taken up for further discussion in
Sec. VI A. In the linear case �Fig. 2�, the steady-state value
of the displacement is precisely the mean value during the
first period. As the strength of the nonlinearity is increased,
the steady-state mean values tend to increase as seen from
Figs. 5, 13, and 21. Therefore, apart from the conclusion that
the resonator approaches the steady state more rapidly for
higher values of �, we also observe that the damping mecha-
nism undergoes qualitative changes as the strength of the
nonlinearity is increased. The results obtained in this section
are taken up for a detailed discussion in Sec. VII of the
paper.

VI. DUFFING POTENTIAL WITH SOFTENING
STIFFNESS

In this section we consider solutions of Eq. �47� for cases
with negative values of �. In comparison with the results
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FIG. 19. �Color online� Evolution of variance of displacement:
�=0.75.
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FIG. 20. �Color online� Mean displacement of the resonator: �
=1.
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FIG. 21. �Color online� Mean displacement of the resonator: �
=1.
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obtained in Sec. V D 2, the dynamics are qualitatively differ-
ent in this case. We note here that the values of �, chosen
based on an extensive numerical investigation, are intended
to depict the interesting qualitative changes in the dynamics.

A. Case �=−0.04

We solve the system of moment equations for �=−0.04
and in Fig. 28 present a comparison of the mean displace-
ment of the resonator with the linear case. It is seen that it
takes more time for the system to reach a steady state in the
case of �=−0.04. In other words, the SET damps the reso-
nator motion much more effectively in the linear case than in
the presence of the softening stiffness Duffing nonlinearity.
As will be evident from the cases that follow, this is a pre-
cursor to the dramatic changes in the resonator dynamics
triggered by variations in � in the softening Duffing case.
Moreover, we note here the contrast with the hardening Duf-
fing case where the presence of nonlinearity enhances the
damping effect thereby forcing the system to the steady state
more rapidly.

We present the phase portrait in Fig. 29. From the figure it
is evident that the system approaches the equilibrium point
described by the coordinates �0.56,0.0� in the phase plane
and that the equilibrium point is a focus.

B. Case �=−0.09

In order to investigate further the reticence of the SET in
damping the resonator motion, we now increase the magni-
tude �absolute value� of the nonlinearity to �=−0.09. The
result is presented in Fig. 30. Evidently, the SET is increas-
ingly ineffective in damping the resonator motion as the
magnitude of � is increased.

C. Case �=−0.11

We now present the most interesting case of �=−0.11.
The mean resonator displacement versus time is presented in
Fig. 31. As seen from the figure, the resonator motion is
totally undamped in this case. In other words, no energy
transfer occurs between the SET and the resonator and the
coupled system is in a state of dynamic equilibrium with the
resonator exhibiting self-sustained oscillations. The implica-
tions of this important result are taken up for discussion in
Sec. VI D. The presence of self-sustained oscillations in a
nonlinear dynamical system is strongly indicative of a peri-
odic attractor and indeed we find one as seen from Fig. 32.
We note here that the existence of such periodic attractors is
a unique feature of nonlinear systems. Furthermore, it is
noteworthy that while limit cycles are well understood in the
context of deterministic systems, the cycle in our case has
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FIG. 23. �Color online� Comparison from FEM: �=1.
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FIG. 24. �Color online� Comparison from FEM: �=1.
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FIG. 25. �Color online� Comparison from FEM: �=1.
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emerged in the averaged dynamics of a stochastic system.

D. Case �=−0.25

Given the existence of a periodic solution for �=−0.11, it
is natural to ask the question of what happens when the
modulus of � is increased further. Here we present the results
for the case �=−0.25. The mean resonator displacement ver-
sus time is presented in Fig. 33 and the phase portrait is
given in Fig. 34. Remarkably, we observe the emergence of
instability in this case. From Fig. 33 we see that the resonator
exhibits oscillation, the magnitude of which grows unbound-
edly. This is corroborated by the phase portrait in Fig. 34
which indicates an unstable focus. Physically, this corre-
sponds to the situation that the SET continuously supplies
energy to the oscillator.

Our results in this section clearly point to the fact that the
dynamics of the SET-resonator system is uniquely sensitive
to the strength of the nonlinearity in softening stiffness Duf-
fing case. Early evidence of the inability of the SET to damp
the resonator motion was observed in Fig. 28 from which we
concluded that even when compared to the case of a weakly
nonlinear softening Duffing potential, the system reaches the
steady state much faster in the presence of a linear harmonic

potential. The ability of the SET to effectively damp the
resonator motion deteriorated further, with an increase in the
magnitude of the strength of the nonlinearity. Finally, at �
=−0.11 we observed that the resonator had attained a dy-
namical state of equilibrium with the SET and there was no
energy transfer in either direction. When the magnitude of
the strength of the nonlinearity was increased further, we
witnessed a dynamical instability at �=−0.25. Indeed the
instability sets in for any value of � less than −0.11 but we
choose to demonstrate it at �=−0.25 for enhanced clarity of
the results. These results are discussed further in Sec. VII.

VII. DISCUSSION AND CONCLUSIONS

Our conclusions from the analysis of the SET-resonator
system in the Duffing regime naturally fall under two cases:
the hardening stiffness case and the softening stiffness case.
In the hardening stiffness case, the primary observation is
that the system indeed reaches a steady state as in the case of
the linear resonator. We note that this is far from obvious a
priori since there is no guarantee that the SET would damp
the resonator motion in the nonlinear regime. Significantly,
the rate of damping is much higher in the nonlinear case.
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FIG. 27. �Color online� Evolution of variance of displacement:
�=1.0.
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FIG. 29. �Color online� Phase portrait: �=−0.04.
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FIG. 30. �Color online� Mean displacement of the resonator: �
=−0.09.
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Furthermore, the rate of damping markedly increases with
the effective nonlinearity in the system �represented by the
parameter ��. It is also to be noted here that the increased
efficacy of the SET in damping the nonlinear resonator mo-
tion is further evidenced by the fact that the mean amplitude
of the first period of oscillation of the resonator decreases
with increasing �. Whereas we observe a value of approxi-
mately 0.605 �Fig. 2� for the first period of resonator oscil-
lation in the linear case, this reduces to approximately 0.54
�Fig. 21� when �=1. It is important to note here that the
higher rate of damping arises exclusively due to the SET-
resonator interaction since we have not considered any ex-
trinsic source of damping in our model. The next point is that
our results are obtained for relatively weak coupling between
the SET and the resonator ��=0.1�, which is the most readily
accessible regime in current experiments. Hence we con-
clude that nonlinearity in the resonator motion significantly
impacts the dynamics of the coupled system even for weak
coupling between the SET and the resonator. This is note-
worthy since often nonlinear effects are associated with
strongly coupled systems.

It is interesting to consider the implications of our results
for SET sensitivity from a practical viewpoint. The SET can
be effectively used as a displacement detector for the nan-
oresonator only after the steady state is achieved for the

coupled dynamics. The conclusion that this steady state is
achieved more rapidly in the nonlinear case seems to indicate
that the coupled system would work better as a sensor in the
nonlinear regime.

An important aspect of the system studied in this paper is
the effective temperature attained by the system in the steady
state. Lower steady-state effective temperatures are highly
desirable for classical measurements while they are critical in
quantum coherent measurements.19 We note here that the
classical theorem of equipartition of energy may be extended
to nonlinear Hamiltonian systems37 in order to define a
steady-state effective temperature. While in a parallel effort
we utilize this idea explicitly in a Fokker-Planck approach to
the SET-resonator system in the Duffing regime,38 it is inter-
esting to note here from Figs. 11, 19, and 27 that the steady-
state value of the variance of the displacement attained by
the oscillator decreases with increasing �. The difference in
numerical values is not large as seen from the figures but it
exists. Since in the steady state the variance of the displace-
ment is directly proportional to the absolute temperature of
the oscillator, we conclude that nonvanishing �, in fact,
pushes the oscillator to a steady state of lower temperature as
compared to the linear case. Thus, our analysis indicates that,
in fact, better cooling of the resonator is achieved in the
hardening stiffness Duffing regime.
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FIG. 31. �Color online� Mean displacement of the resonator: �
=−0.11.
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FIG. 32. �Color online� Phase portrait: �=−0.11.
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FIG. 33. �Color online� Mean displacement of the resonator: �
=−0.25.
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FIG. 34. �Color online� Phase portrait: �=−0.25.
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Finally, we observe from Figs. 5, 13, and 22 that the
steady-state mean value of the resonator displacement tends
to increase with the strength of the nonlinearity. This points
to a qualitative change in the damping mechanism in the
strongly nonlinear regime. We believe this to be an important
observation unique to the nonlinear regime characterized by
the hardening stiffness Duffing potential.

In the softening stiffness Duffing case in the presence of
very weak nonlinearity the SET damps the resonator and the
coupled system reaches a steady state. However, in the pres-
ence of the double-well Duffing potential the SET finds it
harder to damp the resonator motion than in the linear case.
Moreover, the inability of the SET to damp the resonator
becomes acute as the strength of the nonlinearity is in-
creased. For the parameter values that we have consistently
adhered to in this paper ��=0.3 and �=0.1�, we observed that
for a critical value of �=−0.11, the SET, and the resonator
reach a state of dynamical equilibrium characterized by the
presence of a periodic orbit in the phase space. Indeed, in
comparison with the linear harmonic and the hardening stiff-
ness Duffing potentials, this phenomenon is unique to the
softening stiffness Duffing regime emphasizing that the sign
of � critically influences the dynamics.

Finally, we observe the onset of instability below the criti-
cal value of �=−0.11. Again, such a clear onset of instability
is observed only in the double-well Duffing regime. There

has been a lot of recent interest in the phenomenon of the
SET pumping energy into the resonator in specific dynamical
regimes known as back action �see, for instance, Refs. 19
and 25�. While most of the discussion in the literature is
focused on back action as a consequence of unique processes
in the SET, our analysis points to a specific situation where
this can emerge as a purely nonlinear effect—the onset of a
dynamical instability in the SET-resonator system. In the
broad context of nonlinear dynamics of NEMS, knowledge
of the existence of such instabilities can be expected to aid
the design and operation of these systems.

In summary, our analysis of the Duffing regime of a na-
nomechanical resonator coupled to a SET leads to a set of
interesting conclusions in the case of the currently experi-
mentally relevant regime of weak coupling between the de-
vice and the resonator. We hope that our results motivate
efforts to obtain their experimental validation.
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